DPP - 5 (Electrostatics)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

https://youtu.be/qmNI7eLIcgU

https://physicsaholics.com/note/notesDetalis/40

Q 1. A system has two charges $q_{A}=2.5 \times 10^{-7} C$ and $q_{B}=-2.5 \times 10^{-7} C$ located at points $\mathrm{A}(0,0,-0.15 \mathrm{~m})$ and $\mathrm{B}(0,0,+0.15)$ respectively. What is the electric dipole moment of the system?
(a) $7.5 \times 10^{-8} \mathrm{C}-\mathrm{m}$
(b) $2.5 \times 10^{-8} \mathrm{C}-\mathrm{m}$
(c) $0.15 \times 10^{-8} \mathrm{C}-\mathrm{m}$
(d) $7.5 \times 10^{-5} \mathrm{C}-\mathrm{m}$

Q 2. Three charges of $+2 q,-q,-q$ are placed at the corners A, B and C of an equilateral triangle of side a as shown in the adjoining figure. Determine the dipole moment of this combination:

(a) $2 \sqrt{3} q a$
(b) $\sqrt{3} q a$
(c) $2 a a$
(d) $\sqrt{2} q a$

Q 3. An electric dipole is placed along the x-axis centered at the origin O. A point P at a distance 20 cm from the origin such that $O P$ makes an angle $\frac{\pi}{3}$ with the x -axis. if electric field at P makes an angle ϕ with the x -axis, the value of ϕ would be:
(a) $\frac{\pi}{3}+\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(b) $\frac{\pi}{3}$
(c) $\frac{2 \pi}{3}$
(d) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Q 4. Electric field lines in which an electric dipole P is placed as shown. Which of the following statements is correct?

(a) The dipole will not experience any force.
(b) The dipole will experience a force towards right
(c) The dipole will experience a force towards left
(d)The dipole will experience a force upwards

Q 5. A and B are two points on the axis and the perpendicular bisector, respectively, of an electric dipole. A and B are far away from the dipole and at equal distances from it. The fields at A and B are $\overrightarrow{E_{A}}$ and $\overrightarrow{E_{B}}$. Then:
(a) $\overrightarrow{E_{A}}=\overrightarrow{E_{B}}$
(b) $\overrightarrow{E_{A}}=2 \overrightarrow{E_{B}}$
(c) $\overrightarrow{E_{A}}=-2 \overrightarrow{E_{B}}$
(d) None of these

Q 6. Two charges $+10 \mu \mathrm{C}$ and $-10 \mu \mathrm{C}$ are held 2 cm apart. Calculate the electric field at a point on the equatorial line at a distance of 50 cm from the centre of the dipole:
(a) $1.44 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(b) $3.44 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(c) $1.88 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(d) $2.44 \times 10^{5} \mathrm{~N} / \mathrm{C}$

Q 7. The electric force on a point charge situated on the axis of a short dipole is F. If the charge is shifted along the axis to double the distance, the electron force acting will be:
(a) 4 F
(b) F/2
(c) $\mathrm{F} / 4$
(d) $\mathrm{F} / 8$

Q 8. What is the electric field intensity at a point at a distance 20 cm on a line making an angle of 45° with the axis of the dipole of moment $10 \mathrm{C}-\mathrm{m}$?
(a) $1.77 \times 10^{13} \mathrm{~V} / \mathrm{m}$
(b) $0.177 \times 10^{13} \mathrm{~V} / \mathrm{m}$
(c) $17.7 \times 10^{13} \mathrm{~V} / \mathrm{m}$
(d) $177 \times 10^{13} \mathrm{~V} / \mathrm{m}$

Q 9. An electric dipole with dipole moment $4 \times 10^{-9} \mathrm{C} \mathrm{m}$ is aligned at 30° with the direction of a uniform electric field of magnitude $5 \times 10^{4} \mathrm{~N} \mathrm{C}$ - Calculate the magnitude of the torque acting on the dipole:
(a) $10^{-4} \mathrm{Nm}$
(b) $10^{4} \mathrm{Nm}$
(c) $2 \times 10^{-4} \mathrm{Nm}$
(d) 2×10^{4}

Q 10. An electric dipole of length 2 cm , when placed with its axis making an angle of 60° with a uniform electric field, experiences a torque of $8 \sqrt{3} \mathrm{Nm}$. Calculate the potential energy of the dipole, if it has a charge of $\pm 4 n C$
(a) -8 joule
(b) 8 joule
(c) -16 joule
(d) 16 joule

Q 11. An electric dipole moment $\vec{P}=(2 \hat{\imath}+3 \hat{\jmath}) \mu C m$ is placed in a uniform electric field $\vec{E}=$ $(3 \hat{\imath}+2 \hat{k}) \times 10^{5} N C^{-1}$:
(a) The torque that \vec{E} exerts on \vec{P} is $(0.6 \hat{\imath}-0.4 \hat{\jmath}-0.9 \hat{k}) N m$
(b) The potential energy of the dipole is -0.6 J
(c) Both (a) and (b)
(d) The potential energy of the dipole is 0.9 J

Q 12. Two dipoles each of moment $5 \times 10^{-12} \mathrm{C}-\mathrm{m}$ form a cross with their axis (- to +) along the coordinate axes. The potential at a point 20 cm away in a direction making an angle of 30^{0} with x -axis is (if the potential at an infinite distance is taken to be zero):
(a) 1.12 V
(b) 2.12 V
(c) 2.4 V
(d) 1.536 V

Q 13. What is the electric potential at a point distant 100 cm from the centre of an electric dipole of moment $2 \times 10^{-4} \mathrm{C}-\mathrm{m}$ on a line making an angle of 60° with the axis of dipole?
(a) $7 \times 10^{5} \mathrm{~V}$
(b) $8 \times 10^{5} \mathrm{~V}$
(c) $9 \times 10^{5} \mathrm{~V}$
(d) $10 \times 10^{5} \mathrm{~V}$

Q 14. A short electric dipole has dipole moment of $4 \times 10^{-9} \mathrm{C}-\mathrm{m}$. Determine the electric potential due to the dipole at a point distant 0.3 m from the centre of the dipole situated on
(1) the axial line $\left(V_{1}\right)$,
(2) on equatorial line $\left(V_{2}\right)$
(a) $V_{1}=400 \mathrm{~V}, V_{2}=0 \mathrm{~V}$
(b) $V_{1}=400 \mathrm{~V}, V_{2}=200 \mathrm{~V}$
(c) $V_{1}=400 \mathrm{~V}, V_{2}=20 \mathrm{~V}$
(d) $V_{1}=400 \mathrm{~V}, V_{2}=-200 \mathrm{~V}$

Q 15. Two short dipoles, each of dipole moment P are placed at a large separation r. The force between them:
(a) is proportional to product of dipole momenta
(b) is inversely proportional to r^{4}
(c) the force is attractive, if direction of dipole momenta is same, repulsive if opposite
(d) all options are correct

Q 16. An electric dipole consists of two opposite charges of magnitude- $1 \mu \subset$ separated by a distance of 2 cm . The dipole is praced in an electric field $10^{-5} \mathrm{Vm}^{-1}$. The maximum torque that the field exerts on the dipole is:
(a) $10^{-3} \mathrm{Nm}$
(b) $2 \times 10^{-13} \mathrm{Nm}$
(c) $3 \times 10^{-3} \mathrm{Nm}$
(d) $4 \times 10^{-3} \mathrm{Nm}$

Answer Key

Q. 1 a	$\text { Q. } 2 \mathrm{~b}$	Q. 3 a	Q. 4 c	Q. 5 c
Q. 6 a	Q. 7 d	Q. 8 a	Q. 9 a	Q.10 a
Q. 11 c	Q. 12 d	Q. 13 c	Q. 14 a	Q. 15 d
Q. 16 b				

